
© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

SLEC424V1

Embedded Coder for Production Code Generation
Training Objectives
This hands-on, three-day course focuses on developing models in the Simulink® environment
to deploy on embedded systems. The course is designed for Simulink users who intend to
generate, validate, and deploy embedded code using Embedded Coder®. 

Topics include:
● Generated code structure and execution
● Code generation options and optimizations
● Integrating generated code with external code
● Generating code for multirate and nonperiodic systems
● Customizing generated code
● Customizing data
● Testing generated code on target hardware
● Deploying code

Prerequisites
Simulink Fundamentals (or Simulink Fundamentals for Automotive System Design or Simulink
Fundamentals for Aerospace System Design). Knowledge of C programming language.

Products
● Embedded Coder®

Course Outline

Day 1 of 3

Generating Embedded Code (2.0 hrs)

Objective: Configure Simulink models for embedded code generation and effectively interpret
the generated code.
● Architecture of an embedded application
● System specification
● Generating code
● Code modules
● Logging intermediate signals
● Data structures in generated code
● Verifying generated code
● Embedded Coder® build process



© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

SLEC424V1

Optimizing Generated Code (2.0 hrs)

Objective: Identify the requirements of the application at hand and configure optimization
settings to satisfy these requirements.
● Optimization considerations
● Removing unnecessary code
● Removing unnecessary data support
● Optimizing data storage
● Profiling generated code
● Code generation objectives

Integrating Generated Code with External Code (2.0 hrs)

Objective: Modify models and files to run generated code and external code together.
● External code integration overview
● Model entry points
● Integrating generated code into an external project
● Controlling code destination
● Packaging generated code

Controlling Function Prototypes (1.0 hrs)

Objective: Customize function prototypes of model entry points in the generated code.
● Default model function prototype
● Modifying function prototypes
● Generated code with modified function prototypes
● Model function prototype considerations
● Reusable function interface
● Function defaults

Day 2 of 3

Customizing Data Characteristics in Simulink® (1.5 hrs)

Objective: Control the data types and storage classes of data in Simulink.
● Data characteristics
● Data type classification
● Simulink data type configuration
● Setting signal storage classes
● Setting state storage classes
● Impact of storage classes on symbols

Customizing Data Characteristics Using Data Objects (1.75 hrs)

Objective: Control the data types and storage classes of data using data objects.
● Simulink® data objects overview



© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

SLEC424V1

● Controlling data types with data objects
● Creating reconfigurable data types
● Controlling storage classes with data objects
● Controlling data type and variable names
● Data dictionaries

Creating Storage Classes (1.25 hrs)

Objective: Design storage classes and use them for code generation.
● User-defined storage classes
● Creating storage classes
● Using user-defined storage classes
● Sharing user code definitions

Customizing Generated Code Architecture (1.25 hrs)

Objective: Control the architecture of the generated code according to application requirements.
● Simulink model architecture
● Controlling code partitioning
● Generating reusable subsystem code
● Generating variant components
● Code placement options

Model Referencing and Bus Objects (1.25 hrs)

Objective: Control the data type and storage class of bus objects and use them for generating
code from models that reference other models.
● Creating reusable model references
● Controlling data type of bus signals
● Controlling storage class of bus signals
● Model Reference software testing

Day 3 of 3

Scheduling Generated Code Execution (1.75 hrs)

Objective: Generate code for multirate systems in single-tasking, multitasking, and function call-
driven configurations.
● Execution schemes for single-rate and multirate systems
● Generated code for single-rate models
● Multirate single-tasking code
● Multirate multitasking code
● Generating exported functions



© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

SLEC424V1

Testing Generated Code on Target Hardware (2.0 hrs)

Objective: Use processor-in-the-loop (PIL) simulation to validate, profile, and optimize the
generated code on target hardware.
● Hardware support overview
● Arduino setup
● Validating generated code on target
● Target optimization overview
● Profiling generated code on target
● Using code replacement libraries
● Creating code replacement tables

Deploying Generated Code (1.25 hrs)

Objective: Create a working real-time application on an Arduino® board using provided
hardware support.
● Embedded application architecture
● Creating a deployment harness
● Using device driver blocks
● Running a real-time application
● External mode

Integrating Device Drivers (1.5 hrs)

Objective: Generate custom blocks to integrate device drivers with Simulink and generated
code.
● Device drivers overview
● Using Legacy Code Tool
● Customizing device driver components
● Developing a device driver block for Arduino

Improving Code Efficiency and Compliance (0.5 hrs)

Objective: Inspect the efficiency of generated code and verify compliance with standards and
guidelines.
● Model Advisor
● Hardware implementation parameters
● Compliance with standards and guidelines

Appendix A: Embedded System Terminology (0.5 hrs)

Summary:
● Real-time systems
● Scheduling methods
● Glossary



© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

SLEC424V1

Appendix B: TLC Overview (0.5 hrs)

Summary:
● TLC overview
● A first program with TLC
● TLC directives

Appendix C: Fixed-Point Design (1.5 hrs)

Summary: Use Fixed-Point Tool to convert your Simulink model to fixed point.
● Fixed-point scaling and inheritance
● Fixed-Point Designer workflow
● Fixed-Point Tool
● Command-line interface

Appendix D: Stateflow® Code Generation (1.0 hrs)

Summary:
● Code generation with Stateflow®

● Stateflow chart data
● Stateflow storage classes
● Stateflow machine architecture
● Controlling code partitioning in Stateflow charts

Appendix E: Advanced Customization Techniques (1.0 hrs)

Summary:
● Code generation process review
● Custom file processing
● Modifying code generation template (CGT) files
● Modifying custom file processing (CFP) templates

Appendix F: Creating Custom Hardware Targets (2.5 hrs)

Summary:
● Motivation for custom targets
● Custom target development process
● Overview of toolchain integration
● Creating a custom Arduino target
● Deploying code to an Arduino board


