# **Computer Vision with MATLAB**

# **Training Objectives**

This one-day course provides hands-on experience with performing computer vision tasks. Examples and exercises demonstrate the use of appropriate MATLAB<sup>®</sup> and Computer Vision System Toolbox<sup>™</sup> functionality.

Topics include:

- Importing, displaying, and annotating videos
- Detecting objects in videos
- Estimating motion of objects
- Tracking a single object or multiple objects
- Removing lens distortion and measuring planar objects

#### **Prerequisites**

*MATLAB Fundamentals* or equivalent experience using MATLAB. *Image Processing with MATLAB* and basic knowledge of image processing and computer vision concepts.

## **Products**

- MATLAB<sup>®</sup>
- Image Processing Toolbox<sup>™</sup>
- Computer Vision System Toolbox<sup>™</sup>
- Sensor Fusion and Tracking Toolbox<sup>™</sup>

# **Course Outline**

#### Day 1 of 1

# Importing, Visualizing, and Annotating Videos (1.0 hrs)

**Objective:** Import videos into MATLAB, as well as annotate and visualize them. The focus is on using System Objects<sup>TM</sup> for performing iterative computations on video frames.

- Importing and displaying video files
- Highlighting objects by drawing markers and shapes like rectangles
- Combining and overlaying two images
- Performing iterative computations on video frames

## Detecting Objects (1.5 hrs)

**Objective:** Utilize machine learning and deep learning algorithms for complex object detection.

- Marking objects of interest in training images
- Training and using a cascade object detector
- Using a deep learning object detector

## Estimating Motion (1.5 hrs)

**Objective:** Estimate direction and strength of motion in a video sequence.

- Understanding motion perception in images
- Estimating motion using optical flow methods

# Tracking Objects (2.0 hrs)

📣 MathWorks<sup>,</sup> | Training Services

**Objective:** Track single and multiple objects and estimate their trajectory. Handle occlusion by predicting object position.

- Tracking single objects using a Kalman Filter
- Tracking multiple objects using a GNN tracker

#### Camera Calibration (1.0 hrs)

Objective: Remove lens distortion from images. Measure size of planar objects.

- Estimating intrinsic, extrinsic, and lens distortion parameters of a camera
- Visualizing the calibration error
- Removing lens distortion
- Measuring planar objects in real-world units

