
MLEM423V1

MATLAB to C with MATLAB Coder
Training Objectives
This two-day course focuses on generating C code from MATLAB® code using MATLAB
Coder™. The focus is on developing MATLAB code that is ready for code generation,
generating C code that meets optimization requirements, and integrating generated code into
parent projects and external modules. This course is intended for intermediate to advanced
MATLAB users.

Prerequisites
MATLAB® Fundamentals and knowledge of C programming language

Products
● MATLAB Coder™

Course Outline

Day 1 of 2

Code Generation with MATLAB Coder (1.5 hrs)

Objective: Become familiar with MATLAB Coder and its applications.
● MATLAB Coder overview
● Workflow for generating C code from MATLAB code
● Generating C code
● Verifying generated code
● Navigating generated code

Preparing MATLAB Code for Code Generation (2.0 hrs)

Objective: Use MATLAB Coder coding standards to write MATLAB code that is ready for code
generation.
● Translating MATLAB code into C code
● Calling unsupported MATLAB functions
● Preparing existing MATLAB code
● Code preparation workflows

Working with Fixed-Size Data (2.0 hrs)

Objective: Generate C code from MATLAB code that has fixed-size or constant inputs.
● Data characteristics overview
● Specifying fixed-size, top-level inputs
● Specifying constant top-level inputs



MLEM423V1

Working with Variable-Size Data (2.5 hrs)

Objective: Generate C code from MATLAB code that has variable-size inputs or local data.
● Specifying variable-size, top-level inputs
● Specifying variable-size local data
● Reusing variables

Day 2 of 2

Working with Global Data, Structures, and Cell Arrays (2.0 hrs)

Objective: Generate C code from MATLAB code that contains persistent data, global variables,
input structures, or cell arrays.
● Persistent variables
● Global variables
● Working with structures
● Cell arrays in generated code
● Passing arguments by reference

Integrating with External Code (2.0 hrs)

Objective: Integrate generated C code from MATLAB Coder with external C code.
● Code integration overview
● Entry points to generated code
● Integrating external C code using MATLAB Coder interface
● Integrating external C code using an external IDE
● Calling external C functions
● Code verification and profiling
● Source code debugging

Optimizing Generated Code (2.0 hrs)

Objective: Use various options and techniques to optimize generated code.
● Code optimization with loop unrolling and null initialization
● Function inlining and file partitioning
● Configuration objects
● Removing unnecessary code
● Naming conventions in generated code
● Converting a project to a script

Appendix A: Fixed Point Design (2.0 hrs)

Summary:
● Fixed-Point Designer™ overview
● Automated workflow for fixed-point conversion


