
Embedded Coder for Production Code Generation

Training Objectives
This hands-on, two-day course focuses on developing models in the Simulink® environment to
deploy on embedded systems. The course is designed for Simulink users who intend to generate,
validate, and customize embedded code using Embedded Coder®. 

Topics include:

● Generated code structure and execution
● Code generation options and optimizations
● Integrating generated code with external code
● Generating code for multirate systems
● Customizing generated code
● Customizing data

Prerequisites
Simulink Fundamentals (or Simulink Fundamentals for Automotive System Design or Simulink
Fundamentals for Aerospace System Design). Knowledge of C programming language.

Products
● Embedded Coder®

Course Outline

Day 1 of 2

Generating Embedded Code (2.0 hrs)
Objective: Configure Simulink models for embedded code generation and effectively interpret the
generated code.

● Architecture of an embedded application
● System specification
● Generating code
● Code modules
● Logging intermediate signals
● Data structures in generated code
● Verifying generated code
● Embedded Coder® build process

Optimizing Generated Code (2.0 hrs)
Objective: Identify the requirements of the application at hand and configure optimization settings
to satisfy these requirements.

● Optimization considerations
● Removing unnecessary code
● Removing unnecessary data support
● Optimizing data storage
● Profiling generated code
● Code generation objectives



Integrating Generated Code with External Code (1.0 hrs)
Objective: Modify models and files to run generated code and external code together.

● External code integration overview
● Model entry points
● Creating an execution harness
● Controlling code destination
● Packaging generated code

Controlling Function Prototypes (1.0 hrs)
Objective: Customize function prototypes of model entry points in the generated code.

● Default model function prototype
● Modifying function prototypes
● Generated code with modified function prototypes
● Model function prototype considerations
● Reusable function interface
● Function defaults

Customizing Data Characteristics in Simulink® (1.5 hrs)
Objective: Control the data types and storage classes of data in Simulink.

● Data characteristics
● Data type classification
● Simulink data type configuration
● Setting signal storage classes
● Setting state storage classes
● Impact of storage classes on symbols

Day 2 of 2

Customizing Data Characteristics Using Data Objects (1.75 hrs)
Objective: Control the data types and storage classes of data using data objects.

● Simulink® data objects overview
● Controlling data types with data objects
● Creating reconfigurable data types
● Controlling storage classes with data objects
● Controlling data type and variable names
● Data dictionaries

Customizing Generated Code Architecture (1.25 hrs)
Objective: Control the architecture of the generated code according to application requirements.

● Simulink model architecture
● Controlling code partitioning
● Generating reusable subsystem code
● Generating variant components
● Code placement options

Model Referencing and Bus Objects (1.25 hrs)
Objective: Control the data type and storage class of bus objects and use them for generating code
from models that reference other models.



● Creating reusable model references
● Controlling data type of bus signals
● Controlling storage class of bus signals
● Model Reference software testing

Scheduling Generated Code Execution (1.75 hrs)
Objective: Generate code for multirate systems in single-tasking, multitasking, and function call-
driven configurations.

● Execution schemes for single-rate and multirate systems
● Generated code for single-rate models
● Multirate single-tasking code
● Multirate multitasking code
● Generating exported functions

Improving Code Efficiency and Compliance (0.5 hrs)
Objective: Inspect the efficiency of generated code and verify compliance with standards and
guidelines.

● Model Advisor
● Hardware implementation parameters
● Compliance with standards and guidelines

Appendix A: Embedded System Terminology (0.5 hrs)
Objective:

● Real-time systems
● Scheduling methods
● Glossary

Appendix B: TLC Overview (0.5 hrs)
Objective:

● TLC overview
● A first program with TLC
● TLC directives

Appendix C: Fixed-Point Design (1.5 hrs)
Objective: Use Fixed-Point Tool to convert your Simulink model to fixed point.

● Fixed-point scaling and inheritance
● Fixed-Point Designer workflow
● Fixed-Point Tool
● Command-line interface

Appendix D: Stateflow® Code Generation (1.0 hrs)
Objective:

● Code generation with Stateflow®

● Stateflow data
● Stateflow storage classes
● Stateflow machine architecture
● Controlling Stateflow code partitioning


